FWIW, in a typical apartment or single-family home, refrigeration uses a fraction of the energy that space cooling (also via a refrigeration/vapor compression cycle) requires on a warm day (and probably year round too unless in very mild climates). The psychrometric chart path is different so there are of course differences in the amount of energy required for the sensible and latent components, but the real difference is just the volume of air that needs to be dealt with.
My point being that at least from an energy and carbon perspective, lowering the space cooling demand via more effective building envelopes or increasing the space cooling supply efficiency - eg via membrane or dessicant dehumidification, better heat pumps etc) is far more impactful on a macro scale than better refrigeration.
Granted refrigeration in a warehouse eg is really also space cooling, but I’m just making the distinction between the dT=0-25F context and the dT>25F context. If I could only choose one technology to arrive at scale to improve the efficiency, it would be for the former context.
Also the area that needs insulating, and in the extremes the amount of air that needs to be exchanged with the outside to make the house livable, and the heat generated by the people living in it (stick a 100W lightbulb in a fridge and see how cold it can get).
The insulation is actually solvable, and for heating can basically remove the power requirements: a house heated and using heat exchange on air leaving vs entering can be heated a lot just by having people inside it, let alone the other energy they use for other purposes. It's just more expensive to build this way, and with cheap energy it can a long time to pay back. Cooling you can't push down past the heat generated inside the house divided by the COP of your cooler, though.
Yep, PassiveHouse standards which typically include an extremely tight envelope which forces installation of outdoor air supply famously can get away with just a few hundred watts of heating capacity because of heat exchange on the incoming and outgoing airstreams!
Sure I was playing a little fast and loose there, but (a) the large surface area of the home (and resulting conductive transfer through the walls + convection transfer via infiltration through gaps) is directly a result of the fact that you need a significantly larger volume for humans to move around in and live in than you do to store food and (b) even if we do look directly at the volume of air, the difference is significant since at the end of the day, since for any given constant deltaT, your energy spent is still linear with mass or volume. And we are talking about roughly 2-3 orders of magnitude difference in air volume between a house and a refrigerator.
Anyways, if you write out all of the heat balance equations, you get a few W/m2 of flux on the inside wall of the home and a few W/m2 of flux on the inside faces of the fridge, assuming a typical wood frame construction in summer time and steady states all around.
So yes, of course multiplying the flux through the home’s wall by the surface area of the home results in a massive heat gain value compared to the heat gain conducted through the surface of the refrigerator, but that’s arguably precisely because of the two different volume requirements.
My point being that at least from an energy and carbon perspective, lowering the space cooling demand via more effective building envelopes or increasing the space cooling supply efficiency - eg via membrane or dessicant dehumidification, better heat pumps etc) is far more impactful on a macro scale than better refrigeration.
Granted refrigeration in a warehouse eg is really also space cooling, but I’m just making the distinction between the dT=0-25F context and the dT>25F context. If I could only choose one technology to arrive at scale to improve the efficiency, it would be for the former context.